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摘要

杨辉三角形以其几何上的简洁之美以及在组合数学、代数学与概率论中的深远应用而著

称，数百年来持续吸引着数学家的关注。尽管它的起源可以追溯到中国、波斯与欧洲的数学

传统，但其高维类比对象的系统研究仍明显不足。本文对（杨）辉棱锥与（杨）辉单纯性进

行了一次系统且自洽的梳理，并给出完整证明：既涵盖经典结论（如多项式系数恒等式），

也包含新的贡献（如边界性质与尺度性质），并补充了一些在现有文献中较少出现的新视角

（如图论解释）。
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1 引言

杨辉三角形是一种按几何方式排列的二项式系数表，数百年来一直令数学家着迷。尽管它

以法国数学家帕斯卡（Blaise Pascal，1623–1662）的名字命名——帕斯卡在著作 Traité du tri-

angle arithmétique 中对其做了系统研究——但其源头可以追溯到更早的中国与波斯数学传统

[1]。11 世纪中国学者贾宪在其已佚著作中记录了这一三角形结构，后由杨辉在《详解九章算

法》中转引 [2]。大致同时期，波斯数学家 Al-Karaji 及后来 Omar Khayyám 也研究了类似的

三角形配置，使得该结构在伊朗也常被称为“海亚姆三角形” [1]。

杨辉三角形是枚举组合学中的核心对象，导出诸如“曲棍球棒恒等式”和子集计数公式等

经典恒等式 [3]。这些系数在概率论中同样居于关键地位，尤其在刻画伯努利试验以及统计推断

的基础结果中具有重要作用，例如 Feller 对极限定理的系统论述中就频繁出现 [4]。除组合与概

率之外，杨辉三角形还蕴含丰富的数论结构；最为人熟知的是，在其浅对角线上会出现斐波那

契数列，从而揭示了组合数组与递推序列之间的深层联系 [5]。此外，该三角形的递推与对称性

质自然推广到杨辉矩阵的框架之中，后者在线性代数中被用于求解线性方程组、分析矩阵的逆

与特征结构等问题 [6]。

在模运算意义下，杨辉三角形呈现出引人注目的分形性质，典型地会形成谢尔宾斯基三角

形图案，并已被用于计算模型与图像压缩算法 [7]。在计算机科学中，其递归结构支撑动态规划

思想，并可用于设计线性空间复杂度的逐行生成算法 [8]。三角形中的二项式系数还出现在量子

力学中用于描述概率幅 [9]，并在工程领域的纠错码设计中扮演关键角色 [10]。此外，该结构内

在的对称性与生成规则也启发了艺术可视化与建筑、数字媒体中的参数化设计 [11]。

虽然二维杨辉三角形早在 11 世纪就已见诸记载，但在 20 世纪之前，较少有学术工作系统

讨论其高维推广。此后，关于广义杨辉三角形的研究逐渐出现，例如 [12] 与 [13]。部分工作还

提到了“辉棱锥”的概念。例如，Dario Picozzi [14] 研究了投影算子与 Strehl 提出的广义二项
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式系数 [15]之间的联系；在该工作中，Picozzi以“辉棱锥”的形式对这些系数进行可视化，并

利用投影算子的性质发展了在量子计算中更高效实现粒子数守恒约束的算法。

需要指出的是，[14] 中所称的“辉棱锥”并不构成对杨辉三角形的严格推广。严格意义下

的辉棱锥应当是一个更高维的组合结构，将多项式（三项式）系数作为体元进行编码，从而把

“三角形”的概念推广到三维及更高维。迄今为止，严格讨论杨辉三角形高维推广（通常称为

辉棱锥）的正式出版物仍很有限，仅散见于少数来源 [16-17]；而涉及 d 维辉单纯性推广的文献

则更为稀少。

本文重新审视辉棱锥的概念，提出若干新的性质，并为每一条性质给出严格证明。尽管其

中少数定理可能曾在未发表或非同行评审的资料中出现过，但目前尚无可检索的正式引用来

源。据我们所知，本文讨论的大多数性质均为首次系统提出。

本文有两重目标：（1）为辉棱锥与辉单纯性的性质提供一份系统、自洽且包含严格证明的

参考；（2）给出若干原创结果与新的视角。对关键定理，我们在适当处提供多种证明思路以展

示其不同侧面：代数方法（生成函数）、组合方法（计数论证）以及图论方法（路径计数）。

为完整起见，本文整理的经典结果（并给出恰当引用）包括：

• 定理 3.1（递推关系）——经典结论，见 [18-19]

• 定理 4.1（对称性）——可由阶乘定义直接推出

• 定理 4.2（系数和为 3n）——多项式定理的直接推论

本文的原创贡献包括：

• 定理 4.3 及其同余类求和表述

• 定理 4.4（边界性质）

• 定理 4.5（尺度性质）

• 定理 4.6（加权求和公式）

• 定理 4.7（多项式卷积恒等式）

• 定理 4.8（各层最大系数的位置）

• 系统化的高维推广框架（第 5 节）

需要说明的是，我们对“原创贡献”的判断基于对当前公开可获取文献的尽可能全面的检索。

我们承认这一检索可能遗漏了某些结果（例如收录在专著、个人网站、专利数据库或未被索引

的技术报告中的材料）。因此，关于新颖性的声明是建立在“当前可获得的学术资源”这一可及

性前提之上，而非宣称绝对意义上的首创。

本文使用“辉棱锥”（Pascal Pyramid）与“辉单纯性”（Pascal Simplexes）分别指代杨辉

三角形的三维与更高维推广。选择这些术语主要出于直观清晰与易于理解的考虑。

本文其余部分安排如下：第 2 节给出辉棱锥的定义，并阐明其与三项式系数的关系；第 3

节详细讨论递推关系；第 4 节给出若干性质，包括系数和与单位根恒等式等；第 5 节将这些概

念推广到辉单纯性，并给出对应的定义与定理；最后第 6 节给出结论。
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2 辉棱锥与三项式系数

辉棱锥可以视为杨辉三角形的三维推广。

定义 2.1 (辉棱锥). 令 T (n, a, b) 表示辉棱锥中第 n 层、位置 (a, b) 的元素，其中：

1. n ≥ 0 为层号；

2. a, b ≥ 0 为该层内的索引；

3. a+ b ≤ n，以保证该位置在棱锥内有效；

4. c = n− a− b ≥ 0 为隐含的第三个索引。

1

(a) n = 0

1

1 1

(b) n = 1

1

2 2

1 2 1

(c) n = 2

1

3 3

3 6 3

1 3 3 1

(d) n = 3

1

4 4

6 12 6

4 12 12 4

1 4 6 4 1

(e) n = 4

1

5 5

10 20 10

10 30 30 10

5 20 30 20 5

1 5 10 10 5 1

(f) n = 5

1

6 6

15 30 15

20 60 60 20

15 60 90 60 15

6 30 60 60 30 6

1 6 15 20 15 6 1

(g) n = 6

1

7 7

21 42 21

35 105 105 35

35 140 210 140 35

21 105 210 210 105 21

7 42 105 140 105 42 7

1 7 21 35 35 21 7 1

(h) n = 7

图 1: 第 0–7 层的三角形截面。

棱锥中的每个条目都对应三项式展开中的一个系数：

(x+ y + z)n =
∑

a+b+c=n

(
n

a, b, c

)
xaybzc (1)
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其中 c = n− a− b，并且 (
n

a, b, c

)
=

n!

a!b!c!
(2)

为三项式系数（trinomial coefficient），记为 T (n, a, b)。

例 2.1. 如图 1 所示，

1. 第 6 层（n=6）中（见图 1(g)）位置（行：2，列：2）的元素为：

T (6, 2, 2) =

(
6

2, 2, 2

)
=

6!

2!2!2!
= 90. (3)

2. 第 7 层（n=7）中（见图 1(h)）位置（行：3，列：2）的元素为：

T (7, 3, 2) =

(
7

3, 2, 2

)
=

7!

3!2!2!
= 210. (4)

3 递推关系

注 3.1. 下述递推关系在文献中已是经典结论（见 [18-19]）。本文在此给出，以便内容自洽，并

作为后续结果的基础。

定理 3.1. 辉棱锥中的数值满足如下递推关系：

T (n, a, b) = T (n− 1, a− 1, b) + T (n− 1, a, b− 1) + T (n− 1, a, b)

其中 T (n, a, b) 表示三项式系数
(

n
a,b,c

)
（c = n− a− b），并且基例为

T (0, 0, 0) = 1.

证明. 下面用数学归纳法证明定理 3.1。

基例（n = 0）：只有一个项，

T (0, 0, 0) = 1.

归纳步（n− 1 7→ n）：对 n− 1，考虑展开

(x+ y + z)n−1 =
∑

a′+b′+c′=n−1

(
n− 1

a′, b′, c′

)
xa

′
yb

′
zc

′
.

两边同乘 x+ y + z，得

(x+ y + z)n =
∑

a′+b′+c′=n−1

(
n− 1

a′, b′, c′

)
(xa

′+1yb
′
zc

′
+ xa

′
yb

′+1zc
′
+ xa

′
yb

′
zc

′+1).

对 n，由三项式系数定义，

T (n, a, b) =

(
n

a, b, c

)
=

n!

a!b!c!
, 其中 c = n− a− b.

比较系数即可得到：

T (n, a, b) = T (n− 1, a− 1, b) + T (n− 1, a, b− 1) + T (n− 1, a, b),

这正是所需递推关系。

因此，递推关系对所有 n 成立，证毕。
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组合证明. 三项式系数 T (n, a, b) 等价于：将 n 个彼此可区分的对象分配到三个带标签的盒子

中，且三个盒子分别恰好含 a、b、c 个对象的分配方式总数。

为建立递推式，取一个特定的“标记对象”。根据该对象落入哪一个盒子来划分情形，并

对剩余 n− 1 个对象计数：

• 若该对象进入盒 1：则盒 1 还需再放入 a− 1 个对象，总方式数为 T (n− 1, a− 1, b)

• 若该对象进入盒 2：则盒 2 还需再放入 b− 1 个对象，总方式数为 T (n− 1, a, b− 1)

• 若该对象进入盒 3：则盒 3 还需再放入 c− 1 个对象，总方式数为 T (n− 1, a, b)

将三种互不相交的情形相加，得到： T (n, a, b) = T (n − 1, a − 1, b) + T (n − 1, a, b − 1) +

T (n− 1, a, b).

1 Layer n = 0 (Apex)

1 1 1 Layer n = 1

2 2 2 Layer n = 2 (Parents)
2 paths 2 paths 2 paths

6 Layer n = 3 (Target)

T (n, a, b) =
∑

Parents’ Paths

carrying
2
paths

carrying 2 paths

ca
rr
yi
ng

2
pa
th
s

T(3,1,1) = 2+ 2+ 2 = 6

图 2: 辉棱锥递推关系的图论解释。

注 3.2 (图论解释). 该递推关系具有自然的图论含义。若把辉棱锥看作一个有向图：第 n 层的

每个元素 T (n, a, b) 与第 n− 1 层的三个“父节点”相连，则 T (n, a, b) 等于从顶点 T (0, 0, 0) 到

位置 (a, b, c;n) 的长度为 n 的不同路径条数。如图 2 所示，这种“路径计数”的视角提供了另

一种组合理解，并能揭示不同定理之间的联系。

例 3.1. 如图 3 所示，

1. 第 7 层中位置（行：3，列：2）的元素可由第 6 层三个元素相加得到：

210 = 60 + 60 + 90. (5)

2. 第 7 层中位置（行：1，列：4）的元素可计算为：

105 = 60 + 30 + 15. (6)
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1

6 6

15 30 15

20 60 60 20

15 60 90 60 15

6 30 60 60 30 6

1 6 15 20 15 6 1

(a) 第 6 层中的三个元素

1

7 7

21 42 21

35 105 105 35

35 140 210 140 35

21 105 210 210 105 21

7 42 105 140 105 42 7

1 7 21 35 35 21 7 1

(b) 第 7 层中的对应元素

图 3: 辉棱锥中的递推关系。

4 辉棱锥的若干性质

注 4.1. 下述对称性可由多项式系数的阶乘定义直接推出，是众所周知的性质。

定理 4.1. 系数在指标 a、b、c 的任意置换下保持不变。也就是说：(
n

a, b, c

)
=

(
n

b, a, c

)
=

(
n

c, b, a

)
,

这反映了三项式展开所蕴含的内在对称性。

证明. 由式 2 得：(
n

a, b, c

)
=

(
n

b, a, c

)
=

(
n

c, b, a

)
=

n!

a!b!c!
=

n!

b!a!c!
=

n!

c!b!a!
.

1

7 7

21 42 21

35 105 105 35

35 140 210 140 35

21 105 210 210 105 21

7 42 105 140 105 42 7

1 7 21 35 35 21 7 1

图 4: 辉棱锥中的对称性示意。

图 4 展示了辉棱锥中的对称性。

注 4.2. 下述结论可由多项式定理直接推出，本文为完整起见在此给出。
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定理 4.2. 辉棱锥第 n 层所有元素之和为：

n∑
a=0

n−a∑
b=0

T (n, a, b) = 3n.

证明. 考虑展开式

(x+ y + z)n =
∑

a+b+c=n

(
n

a, b, c

)
xaybzc.

令 x = y = z = 1，则左边为

(1 + 1 + 1)n = 3n.

右边则为 ∑
a+b+c=n

(
n

a, b, c

)
.

因此得到恒等式
n∑

a=0

n−a∑
b=0

T (n, a, b) =
∑

a+b+c=n

(
n

a, b, c

)
= 3n.

可验证图 4 中所有元素之和为 2187，即 37。

定理 4.2 是杨辉三角形恒等式
n∑

k=0

(
n

k

)
= 2n

在三维情形下的对应推广。

定理 4.3. 对任意正整数 n > 0，有恒等式：∑
a+b+c=n

(
n

a, b, c

)
ω2a+b = 0,

其中 ω 为 1 的一个本原三次单位根（即 ω3 = 1）。

证明. 考虑三项式展开：

(x+ y + z)n =
∑

a+b+c=n

(
n

a, b, c

)
xaybzc.

代入

x = ω2, y = ω, z = 1.

由于

ω2 + ω + 1 = 0,

从而

(ω2 + ω + 1)n = 0.

另一方面，根据展开式

(ω2 + ω + 1)n =
∑

a+b+c=n

(
n

a, b, c

)
· (ω2)a · ωb · 1c =

∑
a+b+c=n

(
n

a, b, c

)
ω2a+b.
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因此对任意 n > 0，得 ∑
a+b+c=n

(
n

a, b, c

)
ω2a+b = 0.

例 4.1. 当 n = 7 时，计算
∑(

n
a,b,c

)
ω2a+b 需要求和 36 项。然而可以验证：任何三个对称位置

的元素对应的和都为零。例如如图 4 所示，

42ω2×5+1 + 42ω2×1+1 + 42ω2×1+5

= 42ω11 + 42ω3 + 42ω7

= 42ω2 + 42 + 42ω

= 0.

同理，

140ω2×3+1 + 140ω2×3+3 + 140ω2×1+3

= 140ω7 + 140ω9 + 140ω5

= 140ω + 140 + 140ω2

= 0.

因此总和为零。

推论 4.1 (同余类求和). 对任意正整数 n > 0，定义

Si =
∑

a+b+c=n
b−a≡i (mod 3)

T (n, a, b), i ∈ {0, 1, 2}.

则 S0 = S1 = S2 = 3n−1。

这给出了定理 4.3 的另一种表述：单位根导致的抵消来源于三个同余类对总和的贡献相等，

而 1 + ω + ω2 = 0。这与杨辉三角形中“交错和为零”的性质相类似。

定理 4.4. 辉棱锥截面最外侧的元素构成杨辉三角形的第 n 行。更具体地说，截面边界（对角

线）上的元素整体形成一个杨辉三角形。

证明. 第 n 层的对角线元素为 T (n, a, n− a)。由式 2，

T (n, a, n− a) =

(
n

a, n− a, 0

)
=

n!

a!(n− a)!0!
=

n!

a!(n− a)!
=

(
n

a

)
.

因此，对角线元素 T (n, a, n− a) 与杨辉三角形第 n 行的二项式系数一致。

定理 4.4 中出现的杨辉三角形如图 5 所示。

注 4.3 (图论解释). 如前所述，在辉棱锥对应的有向无环图中，每个顶点 (a, b, c;n) 最多有三条

来自第 n− 1 层“父节点”的入边。在棱锥的边界上（例如 b = 0），其中一个坐标为零，使得

仅有两条父边仍然有效。因此，边界上的每个顶点满足与杨辉三角形相同的“两父节点递推”。

从而该边界诱导子图与标准杨辉三角形图同构，且边界项 T (n, a, 0) 恰好对应杨辉三角形第 n

行的二项式系数。
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1

1

1

1

1

1

1

1

(a) n = 0, m < 8

1

2 1

3 2

4 3

5 4

6 5

7 6

7

(b) n = 1, m < 7

1

3 2

6 6 1

10 12 3

15 20 6

21 30 10

42 15

21

(c) n = 2, m < 6

1

4 3

10 12 3

20 30 12 1

35 60 30 4

105 60 20

105 20

35

(d) n = 3, m < 5

1

5 4

15 20 6

35 60 30 4

35 90 20 1

210 60 5

140 15

35

(e) n = 4, m < 4

1

6 5

21 30 10

105 60 10

210 60 5

210 30 1

105 6

21

(f) n = 5, m < 3

1

7 6

42 15

105 20

140 15

105 6

42 1

7

(g) n = 6, m < 2

1

7

21

35

35

21

7

1

(h) n = 7

1

1 7

1 6 21

1 5 15 35

1 4 10 20 35

1 3 6 10 15 21

1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

(i) 杨辉三角形

图 5: 辉棱锥某截面上的对角线形成杨辉三角形。

在辉棱锥第 n 层的截面中，考虑任意一条由三项式系数组成的对角序列。该对角序列之下

存在一族完整的序列家族：其中每一条序列与原对角序列长度相同，并且该家族中每条序列都

与原对角序列成比例。
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定理 4.5. 令

Dn = (T (n, 0, n), T (n, 1, n− 1), · · · , T (n, i, n− i), · · · , T (n, n, 0))

为辉棱锥第 n 层的一条对角序列，其中每个分量都是三项式系数。则对每个 m ≥ 1，在第

(n+m) 层存在序列

D(m)
n = (T (n+m, 0, n), T (n+m, 1, n− 1), · · · , T (n+m, i, n− i), · · · , T (n+m,n, 0))

使得

D(m)
n = cmDn,

其中比例常数 cm 只依赖于 m 与 n。

证明. 由式 2，

T (n, a, n− a) =

(
n

a, n− a, 0

)
=

n!

a!(n− a)!
,

以及

T (n+m, a, n− a) =

(
n+m

a, n− a,m

)
=

(n+m)!

a!(n− a)!m!
=

n!(n+m)!

a!(n− a)!m!n!
.

因此，

T (n+m, a, n− a) = T (n, a, n− a)

(
n+m

m

)
.

也就是说，比例常数 cm 为
(
n+m
m

)
。

例 4.2. 该序列家族如图 5 所示。在图 5(e) 中，比例常数（n = 4，m = 3）为：(
4 + 3

3

)
= 35.

定理 4.6 (三项式系数的加权求和). 对任意非负整数 n，恒等式成立：

n∑
k=0

n−k∑
m=0

(k T (n, k,m)) = n3n−1. (7)

证明. 从三项式展开出发：

(x+ y + z)n =
∑

k+m+ℓ=n

(
n

k,m, ℓ

)
xkymzℓ.

对 x 求偏导，然后令 x = y = z = 1，得到：

n3n−1 =

n∑
k=0

n−k∑
m=0

k

(
n

k,m, n− k −m

)
=

n∑
k=0

n−k∑
m=0

(k T (n, k,m)) .

例 4.3. 如图 6 所示，当 n=7 时，式 7 左端可计算为：

0 + 448 + 1344 + 1680 + 1120 + 245 + 84 + 7 = 5103.

右端为 7× 36 = 7× 729 = 5103。两边一致，从而在 n=7 的情形下验证了该定理。
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(7× 1 = 7

(6×) 7 7 = 84

(5×) 21 42 21 = 245

(4×) 35 105 105 35 = 1120

(3×) 35 140 210 140 35 = 1680

(2×) 21 105 210 210 105 21 = 1344

(1×) 7 42 105 140 105 42 7 = 448

(0×) 1 7 21 35 35 21 7 1 = 0

图 6: 第 7 层的加权行和。

定理 4.7. 对满足 a+ b+ c = n 且 m ≤ n 的非负整数 n,m, a, b, c，恒等式成立：

a∑
j=0

b∑
k=0

(T (m, j, k)T (n−m, a− j, b− k)) = T (n, a, b), (8)

其中求和需满足约束 m− j − k ≥ 0。

证明. 式 8 等价于：

a∑
j=0

b∑
k=0

(
m

j, k,m− j − k

)(
n−m

a− j, b− k, c− (m− j − k)

)
=

(
n

a, b, c

)
, (9)

多项式系数的生成函数为：

(x+ y + z)m =
∑

j+k+ℓ=m

(
m

j, k, ℓ

)
xjykzℓ,

(x+ y + z)n−m =
∑

j′+k′+ℓ′=n−m

(
n−m

j′, k′, ℓ′

)
xj

′
yk

′
zℓ

′
.

将两生成函数相乘：

(x+ y + z)m(x+ y + z)n−m = (x+ y + z)n.

在乘积中 xaybzc 的系数为： ∑
j+j′=a

∑
k+k′=b

(
m

j, k, ℓ

)(
n−m

j′, k′, ℓ′

)
.

化简即可得到左端。

而 (x+ y + z)n 中 xaybzc 的系数为
(

n
a,b,c

)
（右端），从而恒等式成立。

例 4.4. 取 n = 5，m = 2，a = 2，b = 1，c = 2，则左端为：

2∑
j=0

1∑
k=0

(
2

j, k, 2− j − k

)(
3

2− j, 1− k, 2− (2− j − k)

)
.

仅当 j ≤ 2、k ≤ 1且 2−j−k ≥ 0时出现项。计算得到左端为 1·3+2·3+2·6+2·3+1·3 = 30。

右端为 (
5

2, 1, 2

)
=

5!

2! 1! 2!
= 30.

两边一致，从而在该例中验证了定理 4.7。
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定理 4.8 (辉棱锥各层的最大系数). 对每个非负整数 n，第 n 层中的最大多项式系数出现在三

元组 (k,m, ℓ) 处，其中三个分量尽可能接近（尽量“均分”）。更具体地：

1. 若 n = 3q，最大系数为 (
3q

q, q, q

)
=

(3q)!

(q!)3
.

2. 若 n = 3q + 1，最大系数为 (
3q + 1

q, q, q + 1

)
=

(3q + 1)!

(q!)2(q + 1)!
.

3. 若 n = 3q + 2，最大系数为 (
3q + 2

q, q + 1, q + 1

)
=

(3q + 2)!

q!(q + 1)!2
.

证明. 考虑相邻的两个三元组 (k,m, ℓ) 与 (k + 1,m− 1, ℓ)，其系数之比为：(
n

k+1,m−1,ℓ

)(
n

k,m,ℓ

) =
(k + 1)(m)

(m− 1)(k + 1)
=

m

k
.

当 m > k 时系数增大；当 m < k 时系数减小。因此最大值出现在 k ≈ m ≈ ℓ 的位置。

更具体地，

1. 若 n = 3q，最大值出现在 (q, q, q)；

2. 若 n = 3q + 1，最大值出现在 (q, q, q + 1)；

3. 若 n = 3q + 2，最大值出现在 (q, q + 1, q + 1)。

例 4.5. 图 7 列出了第 1–6 层中的最大系数。例如图 7(e) 显示当 n = 6 时，最大系数 30 出现

在 (2, 2, 2)。

最大系数对应于辉棱锥该层的“中心”。

推论 4.2. 若 n mod 3 = 0，则该层中心仅有一个最大值；若 n mod 3 ̸= 0，则该层中心包含

三个最大值。

当 n = 3q+1 时，中心包含 (q, q, q+1)、(q, q+1, q) 与 (q+1, q, q)；当 n = 3q+2 时，中

心包含 (q, q+ 1, q+ 1)、(q+ 1, q, q+ 1) 与 (q+ 1, q+ 1, q)。在图 7(a)–(f) 中可观察到这些不同

的中心形态。
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1

1 1

(a) n = 1

1

2 2

1 2 1

(b) n = 2

1

3 3

3 6 3

1 3 3 1

(c) n = 3

1

4 4

6 12 6

4 12 12 4

1 4 6 4 1

(d) n = 4

1

5 5

10 20 10

10 30 30 10

5 20 30 20 5

1 5 10 10 5 1

(e) n = 5

1

6 6

15 30 15

20 60 60 20

15 60 90 60 15

6 30 60 60 30 6

1 6 15 20 15 6 1

(f) n = 6

图 7: 第 1–6 层中的最大系数位置。

5 推广到辉单纯性

上一节的定理可以从辉棱锥推广到更高维。目前在正式出版物中，对于辉棱锥的高维类似

物尚无广泛接受的统一术语；但在一些非正式讨论中偶尔会出现“Pascal Simplexes（辉单纯

性）”这一说法。本文认为该术语较为贴切，并在全文中采用。

为便于对照本节定理与上一节对应结果，表 1 总结了两者的对应关系。表中关于辉单纯性

的大多数定理，其证明与辉棱锥情形的证明基本同构；为保持简洁，本文略去这些重复证明。

但对定理 5.8，我们给出一个详细证明。该证明不同于其在棱锥情形下对应定理（定理 4.7）

的证明，旨在说明此类定理往往可以从不同角度得到多种证明。此外值得指出的是，Zeng [20]

在 1996年已提出并证明了定理 5.8；不过，Zeng的表述与证明是在未显式关联“辉单纯性”概

念的背景下独立完成的。
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表 1: 由辉棱锥推广得到的辉单纯性对应定理。

辉棱锥 辉单纯性 说明

Definition 2.1 Definition 5.1 d 维辉单纯性的定义

Theorem 3.1 Theorem 5.1 递推关系

Theorem 4.1 Theorem 5.2 多项式系数的对称性

Theorem 4.2 Theorem 5.3 系数和为 dn

Theorem 4.3 Theorem 5.4 单位根恒等式

Theorem 4.4 Theorem 5.5 边界元素形成低一维单纯形

Theorem 4.5 Theorem 5.6 各层对角序列的尺度性质

Theorem 4.6 Theorem 5.7 系数的加权求和

Theorem 4.7 Theorem 5.8 多项式卷积恒等式

Theorem 4.8 Theorem 5.9 最大系数的位置

定义 5.1 (辉单纯性). 令 C(d)(n; a1, a2, . . . , ad−1)表示 d维辉单纯性中第 n层、位置 (a1, a2, . . . , ad−1)

的元素，其中：

1. n ≥ 0 为层号；

2. 对所有 1 ≤ i ≤ d− 1，ai ≥ 0 为该层内位置索引；

3. a1 + a2 + · · ·+ ad−1 ≤ n，以保证位置在单纯形内有效。

单纯形中的每个条目对应多项式展开中的一个多项式系数：

(x1 + x2 + · · ·+ xd)
n =

∑
a1+···+ad=n

(
n

a1, a2, . . . , ad

)
xa11 xa22 · · ·xadd ,

其中 (
n

a1, a2, . . . , ad

)
=

n!

a1!a2! · · · ad!

为多项式系数。位置 C(d)(n; a1, a2, . . . , ad−1) 对应系数
(

n
a1,a2,...,ad−1,ad

)
，其中 ad = n − (a1 +

a2 + · · ·+ ad−1)。

定理 5.1. d 维辉单纯性的条目满足如下递推关系：

C(d)(n; a1, a2, . . . , ad−1) =

d∑
i=1

C(d)
(
n− 1; a1, . . . , ai−1, ai − 1, ai+1, . . . , ad−1

)
,
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其中求和式内部省略了 ad（它由下式隐式给出）：

ad = n− (a1 + a2 + · · ·+ ad−1),

并约定任何出现负指标的项（即 ai < 0）均解释为 0。

基例为

C(d)(0; 0, 0, . . . , 0) = 1.

定理 5.2. d 维辉单纯性表示的多项式系数在指标 a1, a2, . . . , ad 的任意置换下保持不变，其中

ad = n− (a1 + a2 + · · ·+ ad−1)。即对任意置换 σ ∈ Sd，都有(
n

a1, a2, . . . , ad

)
=

(
n

aσ(1), aσ(2), . . . , aσ(d)

)
,

这反映了多项式展开的内在对称性。相应地，对于所有此类指标组，系数满足

C(d)(n; a1, a2, . . . , ad−1) = C(d)(n; aσ(1), aσ(2), . . . , aσ(d−1)),

其中第 d 个分量始终由 ad = n−
∑d−1

i=1 ai 决定，并且上述相等对 {1, 2, . . . , d} 的任意置换 σ 均

成立。

定理 5.3. 令 d ≥ 2 为整数。记 C(d)(n; a1, a2, . . . , ad−1) 为多项式系数

C(d)(n; a1, a2, . . . , ad−1) =

(
n

a1, a2, . . . , ad−1, ad

)
其中 ad = n− a1 − a2 − · · · − ad−1 且所有 ai ≥ 0。则 d 维辉单纯性第 n 层全部系数之和满足

恒等式： ∑
a1+a2+···+ad−1≤n

ai≥0

C(d)(n; a1, a2, . . . , ad−1) = dn.

定理 5.4. 设 ω 为 1 的一个本原 d 次单位根，即 ωd = 1 且对所有 1 ≤ k < d 有 ωk ̸= 1。则对

任意正整数 n > 0，恒等式成立：∑
a1+a2+···+ad=n

a1,...,ad≥0

(
n

a1, a2, . . . , ad

)
ω(d−1)a1+(d−2)a2+···+ad−1 = 0.

等价地，用辉单纯性记号可写为：∑
a1+···+ad−1≤n

C(d)(n; a1, . . . , ad−1) · ω
∑d−1

i=1 (d−i) ai = 0,

其中最后一个坐标由 ad = n −
∑d−1

i=1 ai 定义，并且求和范围为所有满足 ad ≥ 0 的非负整数元

组 (a1, . . . , ad−1)。

定理 5.5. 在 d 维辉单纯性中，第 n 层的边界元素——即那些使得 a1, . . . , ad 中至少有一个等

于 0 的系数 C(d)(n; a1, . . . , ad−1)——整体构成同层的 (d−1) 维辉单纯性的条目。

特别地，对任意固定的 d ≥ 3，d 维辉单纯性第 n 层最外侧元素投影到同层的 (d−1) 维辉

单纯性上。这推广了三维情形（辉棱锥）中边界元素形成杨辉三角形各行的事实。
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定理 5.6. 设 d ≥ 3 为固定整数，且 n ≥ 0。考虑 d 维辉单纯性第 n 层的一条对角序列：

D(d)
n =

(
C(d)(n; 0, 0, . . . , i, n− i), C(d)(n; 0, 0, . . . , i+ 1, n− i− 1), . . . , C(d)(n; 0, 0, . . . , n, 0)

)
,

其中每一项对应某一对角方向上的系数（除两个指标外，其余指标固定为零）。

则对任意整数 m ≥ 1，在第 (n+m) 层存在对应序列

D(d,m)
n =

(
C(d)(n+m; 0, 0, . . . , i, n−i), C(d)(n+m; 0, 0, . . . , i+1, n−i−1), . . . , C(d)(n+m; 0, 0, . . . , n, 0)

)
,

使得

D(d,m)
n = c(d)m (n) ·D(d)

n ,

其中比例常数 c
(d)
m (n) 仅依赖于 m、n 与维数 d，而与序列内部索引 i 无关。

定理 5.7. 设 d ≥ 2 为整数。对任意非负整数 n，恒等式成立：∑
a1+···+ad=n
a1,...,ad≥0

(
a1 · C(d)(n; a1, . . . , ad−1)

)
= n · dn−1,

其中 C(d)(n; a1, . . . , ad−1) 表示多项式系数

C(d)(n; a1, . . . , ad−1) =

(
n

a1, . . . , ad−1, ad

)
, 其中 ad = n−

d−1∑
i=1

ai.

定理 5.8 (多项式卷积恒等式). 设 d ≥ 2 为整数。取 n,m ∈ Z≥0，以及 a1, . . . , ad ∈ Z≥0 满足

a1 + a2 + · · ·+ ad = n, m ≤ n.

则恒等式成立：∑
0≤j1≤a1

...
0≤jd−1≤ad−1

C(d)(m; j1, . . . , jd−1) · C(d)(n−m; a1 − j1, . . . , ad−1 − jd−1) = C(d)(n; a1, . . . , ad−1),

其中每一项隐式满足 jd = m−
∑d−1

i=1 ji ≥ 0 且 ad = n−
∑d−1

i=1 ai ≥ 0。

Combinatorial proof. 设 S 为包含 n 个可区分元素的有限集合。我们考虑将 S 划分为 d 个有

序部分 A1, A2, . . . , Ad 的方式数，使得 1 ≤ i ≤ d 时 |Ai| = ai。这种有序划分的总数由多项式

系数给出：

C(d)(n; a1, . . . , ad−1) =

(
n

a1, . . . , ad

)
.

下面通过一个“两阶段”的组合过程对该数量重新计数。我们将把集合 S 分割成所需部分

的过程分成两步：

首先，从 S 中选择m个元素（共有
(
n
m

)
种选择，但我们将在后续计数中隐式地吸收这一选

择），并将这m个元素划分为 d个有序子集 A
(1)
1 , . . . , A

(1)
d ，满足 |A(1)

i | = ji，其中 j1+· · ·+jd =

m。这样的划分方式数为

C(d)(m; j1, . . . , jd−1),
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其中 jd = m−
∑d−1

i=1 ji ≥ 0。

接着，将剩余的 n−m 个元素划分为 d 个有序子集 A
(2)
1 , . . . , A

(2)
d ，满足对所有 1 ≤ i ≤ d

有 |A(2)
i | = ai − ji。这样的划分方式数为

C(d)(n−m; a1 − j1, . . . , ad−1 − jd−1),

并且 ad − jd = n−m−
∑d−1

i=1 (ai − ji) ≥ 0。

将 A
(1)
i ∪ A

(2)
i = Ai（对所有 i）合并，就得到对全体集合 S 的一个有序划分 A1, . . . , Ad，

并且满足 |Ai| = ai。

为计入所有可能得到最终划分的两阶段过程，我们对所有可行的 j1, . . . , jd−1 求和（满足

0 ≤ ji ≤ ai 且隐式满足 jd = m−
∑d−1

i=1 ji ≥ 0）。因此，该两阶段过程的总方式数为∑
0≤j1≤a1

...
0≤jd−1≤ad−1

C(d)(m; j1, . . . , jd−1) · C(d)(n−m; a1 − j1, . . . , ad−1 − jd−1).

由于左端与右端计数的是同一个对象集合——即把 S 划分为 A1, . . . , Ad 且大小分别为

a1, . . . , ad 的所有有序划分——因此恒等式成立：∑
0≤j1≤a1

...
0≤jd−1≤ad−1

C(d)(m; j1, . . . , jd−1) · C(d)(n−m; a1 − j1, . . . , ad−1 − jd−1) = C(d)(n; a1, . . . , ad−1).

定理 5.9. 设 d ≥ 2 为整数，n 为非负整数。d 维辉单纯性第 n 层的最大多项式系数出现在多

重指标 (a1, a2, . . . , ad−1) 处，其中各分量尽可能接近。具体而言，令 n = dq+ r，其中 q =
⌊
n
d

⌋
且 0 ≤ r < d，则最大系数可由以下形式之一给出：

若 r = 0，最大系数出现在：

C(d)(n; q, q, . . . , q) =
n!

(q!)d
. (10)

若 r = 1，最大系数出现在：

C(d)(n;σq,q,...,q,q+1) =
n!

(q!)d−1(q + 1)!
. (11)

· · · · · ·

若 r = k，0 ≤ k < d，最大系数出现在：

C(d)(n;σq,q,...,q+1,q+1) =
n!

(q!)d−k(q + 1)!k
. (12)

· · · · · ·

在式 11 与式 12 中，σ 表示一个置换函数；在式 12 的置换体内共有 k 个 q + 1。
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6 结论

本文对辉棱锥进行了较为系统的研究，阐明其结构性质并推导出若干新的数学结果。这些

发现有助于加深对多维组合结构的理解，也在一定程度上填补了相关文献的空白——关于辉棱

锥与辉单纯性的正式研究目前仍相对有限。

尽管本文对辉棱锥及其更高维类似物给出了系统论述，但仍有一些值得进一步探索的开放

问题：

• 是否存在一种自然的 q-类比（q-analogue）辉棱锥，使得高斯二项式系数能够推广到三项

式情形？这种结构会具备哪些性质？

• 经典的 Vandermonde 恒等式为
(
2n
n

)
=

∑n
i=0

(
n
i

)2
。是否存在一个自然的三项式系数对应

类比？

• 辉棱锥中系数的渐近分布如何？在三维或更高维随机游走的意义下，是否存在中心极限

定理的类比？

• 沿着 Németh [16] 的思路，是否还有其他几何解释或推广（双曲、椭圆等）能够产生有趣

的组合结构？

• 多项式系数能否像“二项式—伯努利”联系那样，通过离散概率分布得到解释？

• 在高维辉单纯性中，高效计算特定条目或模式的计算复杂度如何？

希望这些问题能够激发对多维杨辉数组丰富结构的进一步研究。

补充材料

本文提供了一个演示辉棱锥旋转动力学的动画文件 RotationalPyramid.mp4。若读者对生

成该动画的 Python 代码感兴趣，欢迎通过电子邮件联系作者。

其它版本

本文的原版为英文版： Hui Li. Structural Properties of Pascal Pyramids and Pascal Sim-

plexes: Classical Results and Some Extensions. Symmetry 2026, 18 (1): 69. 全文链接：
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