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Euler’s totient function

If the number m is prime, then
p(m)=m-—1.

Example
0O 1 2 3 4

$(5) = 4

If p is prime and k = 1 then

dp(P*) =p" —p Tt =pFp-1)
— .k <1 _ l
P p

Proof.

The multiples of p that are less than to p*
are 0,p, 2p, -+, (p*~1 — 1)p, and there are
p*~1 of them.

Therefore, the other p* — p
are all relatively prime to p*.

k=1 humbers
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Example
1 2
3 4 5
6 7 8
9-3=6

$(3%) =32 -3 = 6.

If two numbers m and n are coprime, then

¢(mn) = p(m)¢p(n).

Example

5x3-3-5+4+1=(5-1)(3—-1)=8.

P(3X5)=d(3)P(5) =2x4=8.
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The fundamental theorem of arithmetic
states that if n > 1 there is a unique
expression for n,

_ k1 key
n=p; " Pr,

where p; < p, < -+ < p,- are prime
numbers and each k; > 1.

Then
1
p(n)=n <1 — —),
d(n) = Gy PPN - p(prT)

1 1 1
kq ko K,
ot (1= L) (1 2) et (1-2)
! < p1> 2 < D2 ’ Dr
1 1 1
ki ko ky
= 1——[{1==—)-(1=-=—
PPz pr( p1>< pz> ( pr>
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Example
¢(2125) = ¢£3252)

2

U]

Excise012
What is the last two digits of 27987654321 7
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Property established by Gauss.

Do =n,

din
where the sum is over all positive divisors d
of n.

Example

$(20) + ¢(10) + ¢(5) + ¢(4) + ¢(2)
+ (1) = 20
84+4+4+2+1+1=20

1 2 3 4 5 6 7 8 9 10

207207202020’ 20”20 20" 20’ 20’
11 12 13 14 15 16 17 18 19 20

20°20°20° 20" 20" 20" 20" 20° 20" 20

Put them into lowest terms:

1 1 3 113 7 2 91

20°10°20°5"4°10°20° 5" 20" 2’
11 313 7 3417 9 19 1

20°5°20°10°4°5°20°10° 20" 1




2020/3/31

¢(20)
1 3 7 9 11 13 17 19
_> ________
20’20’20’ 20’ 20" 20° 20’ 20
10 1 3 7 9
—_ — — — —
P10 =115 10° 10 To

c 1 2 4 A 1 3
»( )*<§'§'§'§>’ »( )_’<Z'Z>

1 1
$(2) - <§> $(1) - (T)

2R Z I

Definition

The n-th Cyclotomic Polynomials, for any
positive integer n, is the monic polynomial
which is a divisor of x™ — 1 and is not a
divisor of x¥ — 1 forany k < n.

Its roots are the n-th primitive roots of
unity
ink
e lTL’n’
where k runs over the integers lower than
n and coprime to n.
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In other words, n-th Cyclotomic
Polynomials is equal to
ZiTEE)
®,(x) = | | (x—e n

1<ksn

gcd(kn)=1

Example

Start with x6 — 1 = (x3 — 1)(x3 + 1).
Throw out (x3 — 1) due to 3]6.
Thenx3+1=(x+1)(x?>—x+1).

Throw out (x + 1) due to x + 1]|x? — 1 and
216,

So, @g(x) = x% — x + 1.
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Example
P;(x)=x—1
P,(x)=x+1
P;(x)=x2+x+1
D, (x) =x2+1
DPc(x) =x*+x3+x2+x+1
Pe(x) =x2—x+1
D,(x) =x+x°+x*+x3+x%+x+1
Dg(x) =x*+1

Excise013

Dgy(x) =7
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Theorem

x" -1 =1_[<I>d(x),

din
which means that each n-th root of unity is
a primitive d-th root of unity for a unique d
dividing n.

Example
X =1 = @;(x) Dy (X)P3(X)Pg ()
=@x-DEx+DE*+x+ D(x*—x
+1)

Proof.

1<ksn

If gcd( ,n) = d then
x —e?™n = x — >,

where k' = k/d,n' =n/d, and
ged(k',n") = 1.

10



2020/3/31

!

x — e*™7 is one of the factors of D (x),
for every n' dividing n, exactly once. So,

x"—1= ntbnr (x)

n'|n

Theorem

The degree of @, (x), or in other words the
number of n-th primitive roots of unity, is
¢(n), where ¢ is Euler’s totient function.

11
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Theorem
®,, (x) has integer coefficients.

Proof. (By PMI) @, (x) = x — 1. Suppose
the claim is true for k < m. Then

X —1 =1_[de(x)
al

=[] [ 2« om0

dlm
a<m

The first part is monic with integer

coefficients. So, @,,(x) also has integer
coefficients.

12
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Theorem
Forn = 2, ®,(x) is reciprocal. Namely,

1
b, (;) x®M =@ (x).

Example
Pe(x) =x%>—x+1

AL -,

Proof.(By BMI) It is true for n = 2 because
®,(x) =x+1and

@, <%> cxl =@, (x).

Suppose it is true forn < m.

Dt
(I @)~

1<d<m

13
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Multiply by x™ = xaim #@ =[], x¢@
on both sides.

1—x™ ( x¢(d)
dlm
> 1<d<m

$(m) . _ — 1)

><|r—x

‘pd (x)
dlm
1<d<m

$ P | = | 2P (=04 ()

=1

[ [#aeo

dlm

1
~o( || 2@ ) o (;)x‘ﬂ"@
1<d<m

Cancelling the common facts, we obtain:

1
& ()=, <;> L b(m)

14
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Example

If n is a prime number then
x" =1
=x—-DE" T+ +x2+x+1).

D) =14+x+x%+ 4+ x"1
If n = 2p where p is an odd prime number
then

x??—1=x*-1D(kx+1)-
(xPl - x2—x+1).
Dpp(x) =xP7 — b x2 —x+ 1.

Excise014
Dya(x) =7

15
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Lemma. Let p 1 n (p is a prime) and m|n be
a proper divisor of n (m # n). Then @,,(x)
and x™ — 1 cannot have a common root

mod p.

Proof. (By contradiction) Suppose a is a
common root mod p. Then a™ = 1mod p
forces gcd(a,p) = 1. Next,

1= 0, (] |22 @

din
d<n

x™ — 1 = [gm Pa (x) has all factors in the
last product.

So x™ — 1 should have a double root at a,
one for @,,(x), the other for x™ — 1 or x™

— 1 =[lgjm Pa (x).

Thus
x"—1=(x—a)*f(x)modp

for some f(x).
Then na™ ! = 0 mod p.

However,p t nand p { a, make a
contradiction.

16
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Theorem Let n be a positive integer. There
are infinitely many primes congruent to 1
mod n.

Proof. (By contradiction) Suppose not, let
{p1, P2, -, pn} be all the primes congruent
to 1 mod n.

Choose some large number [ and let M =
®,, (Inp; -+ py). Since @,,(x) is monic, if L is
large enough, M will be > 1 and so divisible
by some prime p.

First, p cannot equal p; for any i, since
®,,(x) has constant term 1, and so p;
divides every term except the last of
@, (Inp; -+ p,,) = it doesn’t divide M.

For the same reason, p t n. In fact,
gcd(p,a) = 1 wherea = Inp; - py .-

17
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Now @, (a) = 0 mod p by definition, which
means a” = 1 mod p.

By the lemma, we cannot have a™

= 1mod p forany m|n, m < n.

So the order of a (mod p) is exactly n,
which means that n|p — 1,
= p = 1modn.

So, p is another prime = 1 mod n.
Contradiction. M

Definition An arithmetic function is a
functionf: ¥ - C

Examples

Define v, (n) as the exponent of the
highest power of the prime p; that divides
n.

That is to say, a; = vp,(n), otherwise it is

zero. Then .

k
ai Vpl' (TI.)
n = pi = pi .
i i

18
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In terms of the above definition, functions
w and (2 are defined by
wn) =k,
N(n) =aq +a; + -+ ag.

Definition
An arithmetic function f is

additive: if f(mn) = f(m) + f(n for all
coprime natural numbers m and n

multiplicative: if f(mn) = f(m)f(n forall
coprime natural numbers m and n

not coprime < completely ---

19
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Multiplicative functions

Definition

o, (n) is the sum of the k-th powers of the
positive divisors of n, including 1 and n,
where k is a complex number. o7 (1), the
sum of the (positive) divisors of n, is usually
denoted by a(n).

Since a positive number to the zero power
is one, gy(n) is therefore the number of
(positive) divisors of n, denoted by d(n).

Definition Mobius function
u(n)
_ =DM = (=120 if w(n) = 02(n)

0 if w(n) #0NMn).

This implies that u(1) = 1. (Because 22(1)
=w(1)=0)

20
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Definition
)1 if n=1
f(n) = {0 if otherwise.
is completely multiplicative. It’s sometimes
called J.
Example

* f(n) = n* for some fixed k € N is also
completely multiplicative.

* ¢(n) is multiplicative.

21
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Additive functions
(n), w(n), and v, (n).

Example
29(M) js multiplicative

Neither multiplicative nor additive
Definition

n(n), the prime counting function, is the
number of primes not exceeding n.

22
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Definition Perfect Number A perfect
number n is one for which o(n) = 2n.

Example
6, 28, 496

An open conjecture: Every perfect number
is even ?

Excise015

Please write a program to find a perfect
number other than 6, 28, 496.

23
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% H***
c(n) = Z a ()b()) = Za@b(?)'

ij=n iln
This function c(n) is called the Dirichlet
convolution of a and b, and is denoted by
a * b. Similar to:

d_ef

e = [ F@ge-ndr

- [ re-ngwar
Example: f *J =7 * f = f forevery f.

Theorem If f and g are multiplicative then
f * g is multiplicative.

Proof. Suppose m and n are coprime. Then
any divisor of mn is of the form d4, d, ,
where d;|m and d,|n, uniquely. So we have

(f*)mm) = > f (dg=)

dlmn

= > ) fddg (dﬁld%)

d1|m d2|n

24
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;n;f @raa(7)s ()
_ (Z f (d))g ( d1>> (Z f (d2)g ( d2>>

dqs|m dy|n

=(framF*rg)(n) N

Definition
Let U(n) = 1 for all n.
Then for any arithmetic functlon f, we have
fm =) F@DU(3)=) f@
dln dln
This is called F(n).

25
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Proof of “a3,(n) is multiplitive”.

k

For the function r,(n) = n, we have

e+ D)) = )" d¥ = g ()
dln
which is therefore multiplicative. W

Other important properties
convolution is commutative
frg=9+f
convolution is associative
fr(gxh)=(f*g)*h

The proof is not provided.

26



