HenselS [IE. [EIR

2020/6/2

Table of Contents

* Hensel 3|32
« %X
i

Sl




Henselg |38

Hensel’s Lemma Suppose that f(x) € Z(x),
f(a) = 0mod p*,
and f'(a) # 0 mod p.
Then there is a unique t mod p such that
f(a+ tp*) = 0mod p**1.

That is, there is a unique solution
b mod p**1 which is congruent to
amod pk.

Proof.

We are looking for the solutions b = a +
tp* wheret € {0,1,-+-,p — 1} to the
congruence mod p*+1,

Use Taylor expansion around a:
f(a+tp")

" )
= f(a) + f'(@)tp" +f( )[ “1? +---+¥[

tp*]"
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If f is a polynomial with integer

(n)
coefficients, % mod pk+1 is an integer.

So,
f(a+ tp™)
= f(a) + f'(a)tp* mod p**! if j>1

2020/6/2

Let both sides to = 0 mod p**1.

f(a) +tp*f'(a) = 0 mod p**?
tf'(a) + Z = 0modp




Example

Use Hensel’s Lemma to find a solution to
x3 — 2x = 1(mod 125).

Let f(x) = x3 — 2x — 1.

Find a solution to f(x) = 0(mod5).

f(0) =—-1=4(mod)5)
f(1) =—-2=3(mod5)
f(2) =3 =3(mod5)
f(3) =20 =0(mod)5)
f(4) =55 =0(mod5)

So, a; = 3,4 are all solutions to f(x) =
0(mod5).

We compute the derivative of f: f'(x) =
3x2 - 2.

f'(3) = 27 — 2 = 25 = 0(mod5)
f'(4) =48 — 2 = 46 = 1(mod>5)
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We cannot apply Hensel’s

(f'(4)~! = 1(mod5).
So

a; =4 - f(D[f' (D] (mod25)
= 4 — 55 X 1(mod25)
= —51(mod25)
= 24(mod25)

as; = 24 — f(24)[f'(24)] 1 (mod125)
= 24 — 13775 X 1(mod125)
= —13751(mod125)
= —1(mod125)
= 124(mod125)
So, x = 124 is a solution to

x3 — 2x = 1(mod125).
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Excise007
Solve the equation:

x3 —x = 139(mod 343)
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Theorem A congruence f(x) = 0modp (p
is a prime) of degree n has at most n
solutions.

Example
*3x—2=0mod7
* x2=2mod7
e x3=1mod7
* x2 = 1mod 15




Proof.

The statements hold for degree 0 or 1.
Assume it holds for degree < n (n = 2).
If it has no root, then done.

Otherwise, suppose it have a root a.

Dividing f(x) by x — a, we obtain g(x) €
Z[x] and a constant r such that

f)=gx)(x—a)+r.
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Now if we plug in @ we obtain
fla)=(a—a)g(a) +r=r,
which means that f (@) = r and
fx) = (x—a)g(a) + f(a).
We know that f(a) modp = 0. If B is any

other root of f(x) then we plug £ into the
equation to obtain

fB) =B —a)g(B) + f(a)modp,
fB) =B —a)g(p)modp,




SO
(B —a)g(B) = 0modp.
We also assume that § # «a, so

g(B) = 0mod p.
So, pB is a root of g(x) as a solution of
g(x) = 0mod p.

We know that g(x) has degreen — 1, so by
induction hypothesis

g(x) =0modp
has at most n — 1 solutions, which by
including a gives f(x) at most n solutions.

Corollary. If
A x™ + ap_1x" 1+ -+ a; = 0modp

has more than n solutions, then all
a; = 0mod p.
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Theorem Let
f(x) =x"+a,_1x" 1+ -+ a,.

f(x) = 0 mod p has exactly n distinct
solutions if and only if f (x) divides
xP — xmod p.
Namely, there exists g(x) € Z[x] such that
f(x)g(x) = xP —xmodp
as polynomials.

Proof.
Part 1.

Suppose f(x) has n solutions. Thenn < p
because only p possible roots mod p.

Divide xP — x by f(x) to obtain

xP —x = f(x)g(x) +r(x),
deg(r) <deg(f) =n.
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Now, if a is a root of f(x) mod p then plug

in to obtain
al —a=f(a)g(a)+r(a) =0

So, & must be a solution to

r(x) = 0mod p.
Since f(x) has distinct roots,
r(x) = 0modp

has n distinct solutions. But deg(r) < n.
So,

xP —x = f(x)g(x) modp,
and f(x) divides xP — x.
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Part2.
Suppose
f(x)|xP — xmod p.
Write
xP —x = f(x)g(x) modp,
where f(x) is a monic of degree n and

g(x) is a monic of degree p — n. We shall
show that f(x) has n distinct solutions.
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By previous theorem, g(x) has at most p —
n roots mod p.

If ¢ € {0,1,---,p — 1} is not a root of g(x)
mod p then
aP —a = f(a)g(a) mod p = 0(Fermat).
Since g(a) # 0 mod p,

f(ax) = 0mod p.

So, since there are at least p — (p — n) such
a, we see that f(x) has at least n distinct
roots mod p.

By the theorem, f(x) has at most n roots
mod p = f(x) has exactly n distinct roots
mod p. |
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Corollary If d|p — 1 then
x% = 1modp

has exactly d distinct solutions mod p.

Example
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Proof.

dlp—1,s0x%—1|xP"1 —1as
polynomials.

p—1=kd,so

xkd —1 = (x4 —1)(xFEDd 4 ... +1),

So,
x% —1|x(xP"t —1) = xP —x.

So has d solutions.
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Another proof of Wilson’s Theorem.
Suppose p is an odd prime.
Let

fx)=x(x—1)-(x—p+1).
This has deg p and p solutions mod p, so it
must divide x? — x mod p.

Both polynomials are monic of the same
degree (p), so must be equal mod p.

x(x—=1) - (x—p+1)=xP—xmodp
Coefficient of x on the left side is just
—1D(2) - (=(p—1))
=D e -Di=(@-D!
since p is odd.

So
(p —1)! = —1modp.
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Question:
We know
gcd(22,35) =1,
e}
22935 = 2224 = 1mod 35.

Is there a smallest positive integer N such
that
22N = 1mod35?

Definition Order

If gcd(a,m) = 1 and h is the smallest
positive integer such that a = 1 mod m
then say h is the order of a mod m.
Notation: h = ord,,(a).

Example
ord,(2) =3
07’d11(2) == 10
0Td11(5) == 5
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Lemma. Let h = ord,,,(a). The set of
integers k such that a® = 1 mod m is
exactly the set of multiples of h.

Example
OT‘dll(S) = 5
If 5 = 1mod 11, then
k = 5,10.
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Proof.a™ = (a™)" = 1" = 1 mod m.
Suppose we have k such that

a® = 1 mod m.
We shall show h|k.

Let k = hq + r where 0 <r < h.
1=ak =aM* =qMq" =1a"
= a” mod m,
SO
a” = 1modm.

Butr < h,sor = 0, and k is multiple of h.
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Lemma. If h = ord,,(a) then a® has order

mod m.
gcd(k,h)
Example
OT‘dll(S) = 5
OT‘dll(Z) = 10
« 53 = 4 has order ——— = 5mod 11.
gcd(3,5)
28 = 3 has order = 5mod 11.

gcd(8,10)

Proof. _
hakf = 1modm © hlkj

S Gedn 'geam )’ € geatmioV

.. . h
So, the smallest positive j = TS
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Lemma. If a has order h mod m and b has
order k mod m, and gcd(h, k) = 1, then
ab has order hk mod m.

Example
OTd11(4) == 5
OT‘dll(lO) = 2
= ord;1(4x10=7)=10
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Proof.

(ab)™ = (aM* ()" = 1%¥1" = 1mod m
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Conversely, suppose that r = ord,,,(ab).

(ab)" = 1modm
(ab)™ = 1modm
(@"h™ = 1modm
b™ = 1modm
So, k|rh = k|r (because gcd(k,h) = 1),

and similarly h|r. So, hk|r, and so hk =
ord,,(ab).

JRIR

Definition Primitive Root

If a has order ¢p(m) mod m, we say that a
is a primitive root mod m.

Example
3 is the primitive root of mod 7.
2,7 are the primitive roots of mod 11.
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Lemma. Let p be prime and suppose q¢|p —
1 for some other prime g. Then there’s an
element mod p of order g°.

Let

p-1=q;"q 4,
The lemma means that 3g; with
ordy(g1) = q;", g, with ordy(g2) = q;°,
etc.

Example
p=101,g=5,e=2
0Td10131 - 25

Setg = 0192 9r-

By the previous lemma, g has order
e e er __ _
49" ¢ =p—1=¢(@).
because all g; are coprime in pairs.

So, g is a primitive root mod p.
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Proof.

Consider solution of x4° = 1 mod p.

Because q¢|p — 1, x2° — 1 has exactly g©

roots mod p

If & is any such root, then ord, (a) must
divide g°.

So, if it is not equal to g€, it must divide
qe—l_

Then a would have to be root of x4° " —
1 = 0 mod p, which has exactly g1
solutions.

Since g€ — g1 > 0, there exists a such
that ord, (a) = q°.

2020/6/2
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Number of primitive roots

The number of primitive roots mod m is
¢(¢p(m)), if there is at least one.

Particularly, if m is a prime, then number of
primitive roots is p(m — 1).

Example

$(9(31)) =8
Indeed, {3,11,12,13,17,21,22,24} are the
primitive roots of 31.

Proof. Suppose there is a primitive root g
mod m.

If we look at the integers 1, g, -+, g#("™ ™1,
they are all coprime to m and distinct mod
m.

Ifwehad g' = g/ modm (0 <i<j<
¢(m) — 1),then we have g/~ = 1 mod m,
contradicting the fact that g is a primitive
root.

Since there are ¢p(m) of these integers,
They are the reduced residue classes.
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Suppose a is a primitive root mod m, then
a=g*modm

ord(g) ¢ (m)

ged(k,ord(g))  gcd(k,p(m))
So the only way for the order to be exactly
¢ (m) is for k to be coprime to ¢p(m).

The number of numbers which are coprime

to p(m) is p(p(m)).

Excise008
Try to find a primitive root of mod 211.
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Theorem™ ™ There is a primitive root mod m
if and only of m = 1,2,4, p®, or 2p°©.

The proof*** is NOT provided here.

Other relative concepts
* Discrete Log

Example
2¥ =5mod 11
x =log,5mod 11

It is a NPC-hard problem.
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