数论简介，素数，算术基本定理

李 辉

Table of Contents

- 数论简介
- 数的演化
- 从自然数开始
- 整除，带余除法和互素
- 与素数相关的著名猜想

数论简介

名人名言
－（Johann Carl Friedrich Gauss 1777．4－1855．2）
－Mathematics is the queen of sciences and number theory is the queen of mathematics． She often condescends to render service to astronomy and other natural sciences，but in all relations she is entitled to the first rank．
－From＂Gauss zum Gedächtniss＂．Book by Wolfgang Sartorius von Waltershausen， 1856.

相关科学与技术
－Algebra
－geometry
－analysis
－logic
－topology
－computer science

数的演化

- 自然数N－＞取反
- 整数Z－＞除
- 有理数 $\mathrm{Q}->$ 实分析／Dedekind Cut
- 实数 R－＞负数开方
- 复数C

Theorem $\sqrt{2}$ is an irrational number．
Proof．
Assume that $\sqrt{2}$ is a rational number．Then

$$
\sqrt{2}=a / b
$$

where a and b are coprime integers．

$$
\begin{gathered}
a^{2} / b^{2}=2 \\
a^{2}=2 b^{2}
\end{gathered}
$$

So，a must be even．

Let $a=2 k$ ．

$$
\begin{aligned}
2 b^{2} & =(2 k)^{2} \\
b^{2} & =2 k^{2}
\end{aligned}
$$

So，b must be even，which contradicts that a／b is irreducible．

从自然数开始

自然数的基本性质
－Successor Operation
－$s(n)=n+1$
－PMI（Principle of Mathematical Induction）
－$p(1)$ is true and $p(n) \Rightarrow p(n+1)$ ，then $p(n)$ is true for all natural numbers．
－WOP（Well Ordering Principle）
－Every nonempty subset of natural number has a smallest element．

Excise 001
Prove（PMI）：

$$
0+1+2+\cdots+n=\frac{n(n+1)}{2}
$$

整除，带余除法和互素

Divisibility

$$
\begin{gathered}
a \mid b \quad \text { if } b=a x \text { for } a, b, x \in Z \text { and } a \neq 0 \\
\forall n \in N, \quad n \mid 0 \\
a|b, b| c \rightarrow a \mid c \\
a|b, a| c \rightarrow a \mid b x+c y \forall x, y \in Z
\end{gathered}
$$

Example

$$
3|6,6| 36 \rightarrow 3 \mid 36
$$

$$
7|14,7| 35 \rightarrow 7 \mid(14 \times 3+35 \times 2=112)
$$

Division with Remainder

Theorem 1: Given $a, b \in Z$ with $a>0$,
$\exists q, r \in Z$, such that $b=a q+r, 0 \leq r<a$
Proof:
Let $S=\{b+k a: k \in Z, b+k a \geq 0\}$
S is notempty: $\left\{\begin{array}{lc}b>0 & \text { then } b+0 a \in S \\ b<0 & \text { then adding a enoughtimes } \\ & \text { to make it positive }\end{array}\right.$

Since S is nonempty, it has a smallest element $r=b+k a$ for some k (WOP).
Setting $q=-k$ results in $r=b-q a$.
$r \geq 0$ because it is in S, and $r<a$ because if not, then $b+(k-1) a$ would be smallest element in S.

Example

$$
\begin{aligned}
& 311=? \times 13+?(a=13) \\
& -21=? \times 11+?(a=11)
\end{aligned}
$$

Definition GCD(Greatest Common

 Divisor)If a and b are not both 0 , then $\operatorname{gcd}(a, b)$ or (a, b) is the greatest common divisor of a and b.

Example

$$
\operatorname{gcd}(24,38)=2
$$

Excise002

$$
\operatorname{gcd}(148,111111)=?
$$

Theorem 2. Let $g=\operatorname{gcd}(a, b)$, then
$\exists v_{0}, y_{0} \in Z$ such that $g=a x_{0}+b y_{0}$.
Proof. Let $S=\{a x+b y: x, y \in Z, a x+$ by $>0\}$, and assume a, b not both 0 . Assume $a \neq 0$,

$$
\text { S is notempty: } \begin{cases}a>0 & \Rightarrow a \in S \\ a<0 & \Rightarrow-a \in S\end{cases}
$$

Since S is notempty, it has a smallest element $g=a x+b y$.

- Prove $g \mid a$ (by contradiction):

$$
\begin{gathered}
a=g q+r, \quad 0<r<g \\
r=a-g q=a-q(a x+b y)=a(1-q x)-b(q y) \\
\Rightarrow r \in S
\end{gathered}
$$

However, $r<g$, so g isn't the smallest.

- Prove g is largest common:

If $d \mid a$ and $d \mid b$, then $d \mid a x+b y=g$. Since
$g|a, g| b$, and g is largest common divisor, then g is $\operatorname{gcd}(a, b)$.

Excise003

$$
\begin{gathered}
\operatorname{gcd}(24,34)=2 \\
2=24 x+34 y, x, y \in Z \\
x=?, y=?
\end{gathered}
$$

Definition Coprime

If $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$, then a and b are coprime.

Example

- 10 and 9 are coprime
- 10 and 12 are not coprime

Corollary: If $\operatorname{gcd}(a, m)=1$ and
$\operatorname{gcd}(b, m)=1$, then $\operatorname{gcd}(a b, m)=1$.
Proof.

$$
1=a x+m y, a x=1-m y
$$

$$
1=b x^{\prime}+m y^{\prime}, b x^{\prime}=1-m y^{\prime}
$$

$$
a b x x^{\prime}=(1-m y)\left(1-m y^{\prime}\right)
$$

$$
=1-m y-m y^{\prime}+m^{2} y y^{\prime}
$$

$$
=1+m\left(-y-y^{\prime}+m y y^{\prime}\right)
$$

$$
1=a b\left(x x^{\prime}\right)+m\left(y+y^{\prime}-m y y^{\prime}\right)
$$

Example

$$
\begin{gathered}
\operatorname{gcd}(5,24)=1 \operatorname{gcd}(7,24)=1 \\
\operatorname{gcd}(35,24)=1
\end{gathered}
$$

Corollary: If $c \mid a b$ and $\operatorname{gcd}(c, a)=1$, then $c \mid b$.

Proof.
$\operatorname{gcd}(a, c)=1 \Rightarrow 1=a x+c y \Rightarrow b=a b x+b c y$ $c|a b, c| b c \Rightarrow c \mid(a b x+b c y)=b$

Example

$$
35 \mid 1050, \operatorname{gcd}(35,6)=1
$$

$$
35 \mid 175
$$

Euclidean GCD Algorithm（辗转相除法）：
Given $a, b \in Z$ ，not both 0 ，one can find $\operatorname{gcd}(a, b)$ as follows．

1．If $a, b<0$ ，replace with negative．
2．If $a>b$ ，switch a and b ．
3．If $a=0$ ，return b ．
4．Since $a>0$ ，write $b=a q+r$ with $0 \leq r<$ a ．Replace $\operatorname{gcd}(a, b)$ with $\operatorname{gcd}(r, a)$ and go to step 3.

Proof. Step 1 and 2 do not affect the GCD.
So only need to prove $\operatorname{gcd}(a, b)=$ $\operatorname{gcd}(r, a)$ where $b=a q+r$. Let $d=$ $\operatorname{gcd}(r, a)$ and $e=\operatorname{gcd}(a, b)$,

$$
\begin{aligned}
d=\operatorname{gcd}(r, a) \quad & \Rightarrow d|a, d| r \\
& \Rightarrow d \mid a q+r=b \\
& \Rightarrow d \mid a, b \\
\Rightarrow & d \mid \operatorname{gcd}(a, b)=e
\end{aligned}
$$

$$
\begin{aligned}
e=\operatorname{gcd}(a, b) \quad & \Rightarrow e|a, e| b \\
& \Rightarrow e \mid b-a q=r \\
& \Rightarrow e \mid r, a \\
\Rightarrow & e \mid g c d(r, a)=d
\end{aligned}
$$

Since d and e are positive and divide each other, and thus being equal.

Excise002 again

$$
\operatorname{gcd}(148,111111)=?
$$

Definition: Prime number
A prime number is an integer $p>1$ such that it cannot be written as $p=a b$ where $a, b>1$.

Example

- 11 is a prime number
- 111 is not a prime number

Theorem 3 (Fundamental Theorem of
Arithmetic) Every positive integer can be written as a product of primes (possibly with repetion) and any such expression is unique up to a permutation of the prime factors.

Example

$$
\begin{gathered}
72=2^{3} \times 3^{2} \\
999999=3^{3} \times 7 \times 11 \times 13 \times 37
\end{gathered}
$$

Proof of Existence (by contradiction):
Let S be the set of numbers which cannot be written as a product of primes. Assume S is not empty, it has a smallest element n by WOP. $n=1$ is not possible by definition, so $n>1$. n cannot be prime, since if so it'd be a product with one term, and so wouldn't be in S.
Hence, $n=a b$ with $a, b>1$.

Also, $a, b<n$ so they cannot be in S by minimality of n, and so a and b are the product of primes. n is the product of the two, and so is also a product of primes, and so cannot be in S, and hence S is empty.

Proof of Uniqueness.
Lemma: If p is prime and $p \mid a b$, then $p \mid a$ or $p \mid b$.
Proof. Assume $p \nmid a$, and let $g=\operatorname{gcd}(p, a)$, since p is prime, $g=1$ or p, and g cannot be p because $g \mid a$ and $p \nmid a$, so $g=1$. So, $p \mid b$.

Corollary: If $p \mid a_{1} a_{2} \cdots a_{n}$, then $p \mid a_{i}$ for some i.

Proof. If $n=1$ then the corollary is true.
Suppose it holds for $n=k$. Let $n=k+1$,

$$
\begin{aligned}
& p \mid a_{1} a_{2} \cdots a_{k} a_{k+1}
\end{aligned}
$$

Proof of Uniqueness. Suppose $n=$
$p_{1} p_{2} \cdots p_{r}=q_{1} q_{2} \cdots q_{s}, p_{1} \mid n=q_{1} q_{2} \cdots q_{s}$, so $p_{1} \mid q_{i}$ for some i. Since p_{1} and q_{i} are prime, $p_{1}=q_{i}$.
Canceling one by one, one can obtain $r=s$ and $p_{1} p_{2} \cdots p_{r}$ is permutation of $q_{1} q_{2} \cdots q_{s}$.

Theorem 4: There are infinitely many primes.
Proof. Suppose there are finitely many
primes $p_{1}, p_{2}, \cdots, p_{n}$, with $n \geq 1$. consider $N=p_{1} p_{2} \cdots p_{n}+1$, and so by the
Fundamental Theorem of Arithemtic there must be a prime q dividing N. Using
Euclidean gcd algorithm, ($p_{i}, p_{1} p_{2} \cdots p_{n}+$ 1) $=\left(p_{i}, 1\right)=1$, and so $p_{i} \nmid N$. So, $q \neq p_{i}$ for any i, and q is a new prime.

Another proof by Euler***

$$
\begin{aligned}
& 1+\left(\frac{1}{p}\right)+\left(\frac{1}{p}\right)^{2}+\left(\frac{1}{p}\right)^{3}+\cdots=\frac{1}{1-1 / p} \\
& \prod_{p} \frac{1}{1-1 / p} \\
&=\prod_{p}\left(1+\frac{1}{p}+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots\right) .
\end{aligned}
$$

After expanding Σ, we can pick out any combination of terms to obtain

$$
\begin{gathered}
\prod_{p} \frac{1}{1-1 / p} \\
=\left(\cdots \frac{1}{\left.p_{1}^{e_{1}} \cdots\right)\left(\cdots \frac{1}{p_{2}^{e_{2}}} \cdots\right) \cdots\left(\cdots \frac{1}{p_{m}^{e_{m}}} \cdots\right) \cdots}\right. \\
=\sum_{n=1}^{\infty} \frac{1}{n}
\end{gathered}
$$

与素数相关的著名猜想

－Goldbach Conjecture
－Twin Prime Conjecture
－Mersenne Prime Conjecture

