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PN A
* (Johann Carl Friedrich Gauss 1777.4-1855.2)
* Mathematics is the queen of sciences and
number theory is the queen of mathematics.
She often condescends to render service to
astronomy and other natural sciences, but in
all relations she is entitled to the first rank.

* From “Gauss zum Gedachtniss”. Book by

Wolfgang Sartorius von Waltershausen, 1856.

R AFHEHRAR
* Algebra
* geometry
* analysis
* logic
* topology
* computer science
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Theorem \/f is an irrational number.

Proof.

Assume that \/E is a rational number. Then
V2 =a/b,

where a and b are coprime integers.
a?/b? =2
a’? = 2b?

So, a must be even.
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Let a = 2k.
2b% = (2k)?
b? = 2k?
So, b must be even, which contradicts that
a/b is irreducible. [ |

M B RE I 1A

B AR Ay A R MR
* Successor Operation
e sm)y=n+1
* PMI (Principle of Mathematical Induction)
* p(1)istrueand p(n) = p(n+ 1), then p(n) is
true for all natural numbers.
* WOP (Well Ordering Principle)

* Every nonempty subset of natural number has a
smallest element.
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Excise 001
Prove (PMI):
nn+1)
0+1+2+d+n=—0—

Bir. TREFAMESR

Divisibility

alb if b=ax for a,b,x € Z and a # 0
vneN, n|0
a|b,b|c = alc
alb,alc = albx +cy Vx,y € Z

Example
3]16,6|36 — 3|36
7114,7|35 - 7|(14 X 3+ 35 x 2 =112)
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Division with Remainder

Theorem 1: Given a, b € Z witha > 0,
dq,r € Z,suchthatb =aq+r,0<r<a

Proof:
LetS={b+ka:k€Z,b+ ka = 0}
b>0 then b+0a€S
Sisnotempty:{ b <0 then adding a enoughtimes

tomake it positive

Since S is nonempty, it has a smallest
elementr = b + ka for some k (WOP).
Setting ¢ = —k resultsinr = b — qa.

r = 0 becauseitisin S, and r < a because
if not, then b + (k — 1)a would be smallest
elementin S. [
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Example
311 =?%x 1347 (a = 13)

—21 =?x 1147 (a = 11)

Definition GCD(Greatest Common
Divisor)
If a and b are not both 0, then gcd(a, b) or

(a, b) is the greatest common divisor of a
and b.
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Example

gcd(24,38) =2
Excise002

gcd(148,111111) =?

Theorem 2. Let g = gcd(a, b), then
Avy, Vo € Z such that g = axy + by,.

Proof. Let S = {ax + by:x,y € Z,ax +
by > 0}, and assume a, b not both 0.
Assume a # 0,

a>0 >a€S
a<0 =>—-a€S

Since S is notempty, it has a smallest
element g = ax + by.

S is notempty: {
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* Prove g|a (by contradiction):

a=g9gq-+r, O0<r<g

r=a-gq=a-q(ax+by)=a(l-qgx)—b(qy)

=>T€ES
However,r < g, so g isn’t the smallest.
* Prove g is largest common:
If d|a and d|b, then d|ax + by = g. Since
gla,g|b, and g is largest common divisor,
then g is gcd(a, b). |

Excise003
gcd(24,34) =2
2=24x+ 34y, x,y € Z

x =7,y =?
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Definition Coprime
If gcd(a,b)=1, then a and b are coprime.
Example

* 10 and 9 are coprime
* 10 and 12 are not coprime

Corollary: If gcd(a,m) = 1 and
gcd(b,m) = 1, then gcd(ab,m) = 1.

Proof. l=ax+my,ax=1—my

1=bx'"+my’,bx' =1—my

abxx' = (1 —my)(1 —my")
=1—-my —my' +m?yy'
=1+m(=y -y +myy)

1=ab(xx")+my+y —myy)

!

10
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Example
gcd(5,24) =1gcd(7,24) =1

gcd(35,24) =1

Corollary: If clab and gcd(c,a) = 1, then

c|b.

Proof.

gecd(a,c)=1=>1=ax+cy = b =abx + bcy
clab, c|bc = c|(abx + bcy) = b

11
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Example
35|1050, gcd(35,6) =1

35|175

Euclidean GCD Algorithm (%% % A8 % i%):
Given a, b € Z, not both 0, one can find
gcd(a,b) as follows.

1.Ifa,b < 0, replace with negative.

2.1f a > b, switch a and b.

3.Ifa =0, return b.

4.Sincea > 0,writeb =aq +rwith0 <r <
a. Replace gcd(a, b) with ged(r,a) and go
to step 3.

12
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Proof. Step 1 and 2 do not affect the GCD.
So only need to prove gcd(a,b) =
gcd(r,a) whereb =aq +r.lLetd =
gcd(r,a)and e = gcd(a,b),

d = gcd(r,a) = d|a,d|r
=>dlag+r=0>

= d|a,b
= d|gcd(a,b) =

®

e = gcd(a,b) = el|a,e|b
=elb—aq=r
=e|r,a
= e|gcd(r,a) =d
Since d and e are positive and divide each
other, and thus being equal. |

13
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Excise002 again

gcd(148,111111) =?

Definition: Prime number

A prime number is an integer p > 1 such
that it cannot be written as p = ab where
a,b>1.

Example
* 11is a prime number
* 111 is not a prime number

14
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Theorem 3 (Fundamental Theorem of
Arithmetic) Every positive integer can be
written as a product of primes (possibly
with repetion) and any such expression is

unigue up to a permutation of the prime
factors.

Example
72 = 23 x 32

999999 = 33 x 7 x 11 X 13 X 37

15
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Proof of Existence (by contradiction):

Let S be the set of numbers which cannot
be written as a product of primes. Assume
S is not empty, it has a smallest element n
by WOP. n = 1 is not possible by definition,
son > 1.n cannot be prime, since if so it'd
be a product with one term, and so
wouldn’t be in S.

Hence, n = ab witha, b > 1.

Also, a, b < n so they cannot be in S by
minimality of n, and so a and b are the
product of primes. n is the product of the
two, and so is also a product of primes, and
so cannot be in S, and hence § is empty.

16
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Proof of Uniqueness.

Lemma: If p is prime and p|ab, then p|a or
p|b.

Proof. Assume p { a, and let g = gcd(p, a),
since p is prime, g = 1 or p, and g cannot
be p because glaandp t a,so g = 1. So,

p|b.

Corollary: If p|la,a, -+ a,,, then p|a; for

some i.

Proof. If n = 1 then the corollary is true.

Suppose it holdsforn = k. Letn = k + 1,
plaia; -+ axag 41

A B
plA = plaia; -+ ai
p|AB = = pla; for some i
p|B = Plak+1

17
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Proof of Uniqueness. Suppose n =

PiP2 " Pr = q1G2 " qs, P1In = 1G4z G,
so p1|q; for some i. Since p; and g; are

prime, p; = q;.
Canceling one by one, one can obtainr = s

and p1p, - py is permutation of g;q5 **- qs.
|

Theorem 4: There are infinitely many
primes.

Proof. Suppose there are finitely many
primes pq, P2, '+, Pn, Withm = 1. consider
N = pipy - p, + 1, and so by the
Fundamental Theorem of Arithemtic there
must be a prime g dividing N. Using
Euclidean gcd algorithm, (p;, p102 *** Pn +
1)=(p;;1) =1,andsop; t N.So, q # p;
forany i, and g is a new prime. &

18
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Another proof by Euler™*

After expanding X, we can pick out any
combination of terms to obtain

1_[ 1 —11/p

19
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* Goldbach Conjecture
* Twin Prime Conjecture
* Mersenne Prime Conjecture

20



